Algorithms for realizing degree sequences of directed graphs

نویسنده

  • Michael Drew Lamar
چکیده

The Havel-Hakimi algorithm for constructing realizations of degree sequences for undirected graphs has been used extensively in the literature. A result by Kleitman and Wang extends the Havel-Hakimi algorithm to degree sequences for directed graphs. In this paper we go a step further and describe a modification of Kleitman and Wang’s algorithm that is a more natural extension of Havel-Hakimi’s algorithm, in the sense that our extension is equivalent to Havel-Hakimi’s algorithm when the degree sequence is Eulerian and has an even degree sum. We identify special degree sequences, called ~ C3-anchored, that are ill-defined for the algorithm and force a particular local structure on all directed graph realizations. We give structural characterizations of these directed graphs, as well as degree sequence characterizations for the ~ C3-anchored set. This allows us to identify the ill-defined sequences, leading to a well-defined algorithm. We end with an application to realizing Eulerian degree sequences with an odd degree sum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tenacity and rupture degree parameters for trapezoid graphs

Reliability of networks is an important issue in the field of graph and network. Computation of network vulnerability parameters is NP-complete for popular network topologies such as tree, Mesh, Cube, etc.In this paper, we will show that the tenacity and rupture degree parameters for trapezoid graphs can be computed in polynomial time.

متن کامل

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...

متن کامل

NP-Hardness and Fixed-Parameter Tractability of Realizing Degree Sequences with Directed Acyclic Graphs

In graph realization problems one is given a degree sequence and the task is to decide whether there is a graph whose vertex degrees match the given sequence. This realization problem is known to be polynomial-time solvable when the graph is directed or undirected. In contrast, we show NP-completeness for the problem of realizing a given sequence of pairs of nonnegative integers (representing i...

متن کامل

Uniform sampling of undirected and directed graphs with a fixed degree sequence

Many applications in network analysis require algorithms to sample uniformly at random from the set of all graphs with a prescribed degree sequence. We present a Markov chain based approach which converges to the uniform distribution of all realizations for both the directed and undirected case. It remains an open challenge whether these Markov chains are rapidly mixing. For the case of directe...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0906.0343  شماره 

صفحات  -

تاریخ انتشار 2009